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APPROXIMATE SOLUTIONS TO ONE-DIMENSIONAL

BACKWARD HEAT CONDUCTION PROBLEM USING

LEAST SQUARES SUPPORT VECTOR MACHINES

Ziku Wu*, Fule Li**, and Do Young Kwak***

Abstract. This article deals with one-dimension backward heat
conduction problem (BHCP). A new approach based on least squares
support vector machines (LS-SVM) is proposed for obtaining their
approximate solutions. The approximate solution is presented in
closed form by means of LS-SVM, whose parameters are adjusted
to minimize an appropriate error function. The approximate solu-
tion consists of two parts. The first part is a known function that
satisfies initial and boundary conditions. The other is a product of
two terms. One term is known function which has zero boundary
and initial conditions, another term is unknown which is related
to kernel functions. This method has been successfully tested on
practical examples and has yielded higher accuracy and stable so-
lutions.

1. Introduction

Heat conduction problems usually fall into two classes: the direct
heat conduction problems and the inverse heat conduction problems.
Solutions of an inverse heat conduction problem entail determining un-
known model parameters based on some observed values [1]. These
model parameters include initial and boundary conditions, heat conduc-
tion coefficient, source function. Recently, the inverse heat conduction
problems had attracted much attention from the researchers because
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they have powerful benefits in engineering and science [2]-[3]. Tradition-
ally, analytical and numerical methods are the main methods which are
employed to handle the inverse problems, such as adjoint assimilation
method, integral transformation method, finite difference method, finite
element method and exact methods. Due to their ill-posedness, almost
all methods concern regularization technique. The backward heat con-
duction problems are known as determination of the initial conditions
from the known distribution of the final time. There has been a lot of
research works related to the inverse problem [4]-[6]. It is all known
that the problems are ill posed. It is difficult to obtain stable solutions,
so some regularization strategies should be considered. During the last
two decades, some researches employed artificial neural networks (ANN)
methods to solve the problems [7]-[10]. And to some extent the ANN
method is very successful which improved the stability of the solutions.
Although the ANN method has so many properties, it has two draw-
backs. The first is the existence of many local minima solutions. The
second is how to choose the number of hidden units. Support vector ma-
chines (SVM) proposed by Vapnik et al. 1995[11] has been successfully
applied in many aspects for its high generalization ability and global
optimization property. The simplicity of least square support vector
machines (LS-SVM [12]-[13]) promotes the applications of SVM. Over
the last decade, many pattern recognition and function approximation
problems have successfully been tackled with LS-SVM method. Re-
cently, Mehrkanoon et al. [14]-[16] proposed a new approach based on
LS-SVM to solve ODEs and to estimate the unknown parameters in
ODEs.

In this work, we employ a method based on LS-SVM to solve the
one-dimensional backward heat conduction problems. In contrast to the
traditional approach, the advantage of applying this method in solving
the backward heat conduction problems is that no prior information is
needed on the functional form of the unknown quantities. In addition,
no initial guess is required and the solution can be computed by solving
linear equations. This paper is organized as follows. The next section
we introduce LS-SVM theory briefly. In Section 3, we formulate the LS-
SVM method for the solution of the problems. In Section 4, we illustrate
the method by means of examples and compare our results to analytic
solutions. Finally, in Section 5 we give a conclusion of this work.
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2. Brief introduction to the LS-SVM approach

Let us consider a given training set {Vi, Yi}Ni=1 with input data Vi ∈
Rk and output data Yi ∈ R. Our goal is to estimate a model of the
following form using the regression:

(2.1) Y (V ) =
N∑
j=1

αjK(V, Vj) + b.

The LS-SVM model for regression can be written as the following qua-
dratic programming problem:

(2.2) min
a,b,e

1

2
αTα+

γ

2
eT e

(2.3) such that Yi =
N∑
j=1

αjK(Vi, Vj) + b+ ei, i = 1, · · · , N,

where γ ∈ R+ is a penalty factor, ei ∈ R are bias terms, K(p, q) =

exp(−‖p−q‖
2

2σ2 ) is the Gaussian RBF kernel, and α, b are regression param-

eters. With ~Y = (Y1, Y2, · · · , YN )T ∈ RN and 1N = (1, 1, · · · , 1)T ∈ RN ,
the solutions is given by

(2.4)

[
Ω + IN

γ IN
ITN 0

]
=

[
α
b

]
=

[
Ŷ
0

]
,

where Ωi,j = K(Vi, Vj) is the i, j-th entry of the positive definite kernel
matrix and IN is the identity matrix of order N .

3. Formulation of the method for one dimensional heat con-
duction problem

In this paper, we consider the following equations

(3.1)


∂T

∂t
= k

∂2T

∂x2
, (x, t) ∈ (0, a)× (0, b)

T (0, t) = g1(t), T (a, t) = g2(t), t ∈ [0, b]
T (x, 0) = f(x), x ∈ [0, a]

(3.2)


∂T

∂t
= k

∂2T

∂x2
, (x, t) ∈ (0, a)× (0, b)

T (0, t) = g1(t), T (a, t) = g2(t), t ∈ [0, b]
T (x, 0) = F (x), x ∈ [0, a]
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Equations (3.1) and (3.2) are the direct problem and the inverse problem,
respectively. The aim of the inverse problem is to find T (x, 0) = f(x).

In order to get approximate solutions of (3.1) and (3.2) , we consider
a mesh of M uniformly distributed interior points as training set of
points. We reshape these points as a vector V = [V1, V2, · · · , VM ]T , Vi =
(xi, ti) is the i-th interior point. Assume the approximate solution of the
equation has the following expression:

(3.3) T̂ (V ) = A(V ) +B(V )
( M∑
j=1

αjK(V, Vj) + b
)
,

where V = (x, t), Vj = (xj , tj),K(U, V ) = exp(−‖U−V ‖
2

2σ2 ) is the Gauss-
ian RBF kernel function, and σ is the kernel bandwidth. α and b are
the regression parameters that have to be determined. In this expres-
sion, A(V ) = A(x, t) is a known function, which satisfies the initial
conditions and boundary conditions. On the other hand, the function
B(V ) = B(x, t) takes zero on boundary and at the given moment. Nei-
ther functions includes any adjustable parameter.

For the direct problem (2.4), we have

A(V ) = (1− x

a
)g1(t) +

x

a
g2(t) + (1− t

b
)

·
[
f(x)−

(
1− x

a

)
f(0)− x

a
f(a)

]
(3.4a)

B(V ) = x(a− x)t.(3.4b)

For the inverse problem (3.1), we have

A(V ) = (1− x

a
)g1(t) +

x

a
g2(t) +

t

b

·[F (x)− (1− x

a
)F (0)− x

a
F (a)](3.5a)

B(V ) = x(a− x)(b− t).(3.5b)

It is easy to check that T̂ (V ) satisfies the initial and the boundary con-
ditions. Inserting (3.3) into original equations (3.1) and (3.2), we obtain
the following equation:

(3.6)
M∑
j=1

αjG(V, Vj) +Q(V )b+W (V ) = 0,

where

Q(V ) = Bt(V )− kBxx(V ), W (V ) = At(V )− kAxx(V )

G(V, Vj) = G1(V, Vj) +G2(V, Vj) +G3(V, Vj) +G4(V, Vj)
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G1(V, Vj) = Q(V )K(V, Vj), G2(V, Vj) = B(V )Kt(V, Vj)

G3(V, Vj) = −2kBx(V )Kx(V, Vj), G4(V, Vj) = −kB(V )Kxx(V, Vj).

To obtain the optimal values of α and b, we solve the following quadratic
optimization problem:

(3.7) min
α,e,b

1

2
αTα+

γ

2
eT e

(3.8)

such that
M∑
j=1

αjG(Vi, Vj) +Q(Vi)b+W (Vi) + ei = 0, i = 1, 2, · · · ,M,

where γ ∈ R+ is regularization parameter, and ei is bias terms. The
Lagrangian function of the constrained optimization problem (3.7) and
(3.8) becomes
(3.9)

L(α, e, b, η) = 1
2α

Tα+ γ
2e
T e

−
M∑
i=1

ηi(

M∑
j=1

αjG(Vi, Vj) +Q(Vi)b+W (Vi) + ei).

Then the Karush-Kuhn-Tucher (KKT) optimality conditions as follows:

(3.10)



∂L

∂αi
= αi −

M∑
j=1

ηjG(Vj , Vi) = 0

∂L

∂ei
= γei − ηi = 0

∂L

∂ηi
=

M∑
j=1

αjG(Vi, Vj) +Q(Vi)b+W (Vi) + ei = 0

∂L

∂b
= −

M∑
i=1

ηiQ(Vi) = 0

After elimination of the primal variable ei, the solution is given by

(3.11)

−IM KMT Z

KM IM
γ LQ

ZT LQT 0

 =

αη
b

 =

 0
rh
0

 ,
where rh = −[W (V1),W (V2), · · · ,W (VM )]T , Z = [0, · · · , 0]T and LQ =
[Q(V1), Q(V2), · · · , Q(VM )]T are M dimensional vectors, IM is a unit
matrix of order M , KM = [G(Vi, Vj)] is the kernel matrix of order M .
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Equation (3.11) is linear, which can be solved easily. Finally, we can
obtain the approximate function as (3.3). The performance of the LS-
SVM model depends on the selection of the tuning parameters. In this
paper, the Gaussian RBF kernel is employed. Therefore, the results
are determined by two parameters, namely, the regularization γ and the
kernel bandwidth σ. In order to achieve approximate solutions accurate
enough, we should take γ quite large. In all examples, the chosen value
for γ was 108. So, the only parameter that needs to be tuned is σ. In
this paper, an approach is proposed which is based on Crank-Nicolson
difference method. The parameter σ is chosen according to the following
rule:

min
σ
‖Eki ‖∞(3.12)

Eki =
T k+1
i − T ki

τ
− 1

2h2
[T k+1
i+1 − 2T k+1

i + T k+1
i−1 − (T ki − 2T ki + T ki−1)]

T ki = A(xi, tk) +B(xx, tk)(

M∑
j=1

αjΦ(xi, tk, Vj) + b),

where h and τ are the step size of space and time, respectively. Theo-
retically, ‖Eki ‖∞ satisfies ‖Eki ‖∞ = O(τ2 + h2). Therefore, the smaller
‖Eki ‖∞, the better σ is. So it can be an optimal criterion of σ.

4. Examples

In this section, we test the performance of the method on two prob-
lems. In order to show the approximation capability of the method,
we compare the computed approximate solutions with the analytic so-
lutions. We divide the domain Ω by equal steps on x- axis h and t axis
τ . We illustrate the results on two cases.

Case I: h = π/20, τ = 0.1 and M = 171. Case II: h = π/40, τ = 0.05
and M = 741. Here TA and TL stand for the analytic solutions and the
LS-SVM solutions, respectively.

Problem 4.1. Consider the following equations. The direct problem
is

(4.1)


∂T

∂t
=
∂2T

∂x2
, (x, t) ∈ (0, π)× (0, 1)

T (0, t) = T (π, t) = 0, t ∈ [0, 1]
T (x, 0) = sinx+ sin 2x, x ∈ [0, π]
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Figure 1. Numerical results for equation (3.12) at t = 0.
a: Case I, b: Case II.

And the inverse problem is

(4.2)


∂T

∂t
=

1

4

∂2T

∂x2
, (x, t) ∈ (0, π)× (0, 1)

T (0, t) = T (π, t) = 0, t ∈ [0, b]

T (x, 1) = e−
1
4 sinx+ e−1 sin 2x, x ∈ [0, π]

The analytic solution is T (x, t) = exp(− t
4) sinx + exp(−t) sin 2x. The

approximate solutions obtained by our method are compared with the
analytic solutions and results are depicted in Fig. 1-2. The related
parameters information is tabulated in Table 1. It is clear that the
approximate solutions are quite acceptable, despite the fact that fewer
training points are employed.
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Figure 2. Numerical results for equation (3.12) at t = 0.
a: Case I, b: Case II.

Direct Inverse

case ‖TA − TL‖∞ aver err 2σ2 ‖TA − TL‖∞ aver err 2σ2

case I 1.66 e-4 6.01e-5 1.215 8.79e-4 4.26e-4 1.475
case II 4.47e-5 1.37e-5 1.345 2.66e-4 8.91e-5 1.675

Table 1. Numerical results of the proposed method for
solving example I

Problem 4.2. Consider the following equations. The direct problem
is

(4.3)


∂T

∂t
=
∂2T

∂x2
, (x, t) ∈ (0, π)× (0, 1)

T (0, t) = e−t, T (π, t) = −e−t, t ∈ [0, 1]
T (x, 0) = cosx, x ∈ [0, π]
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Figure 3. Numerical results for equation (4.2) at t = 1.
a: Case I, b: Case II.

And the inverse problem is

(4.4)


∂T

∂t
=
∂2T

∂x2
, (x, t) ∈ (0, π)× (0, 1)

T (0, t) = e−t, T (π, t) = −e−tx, t ∈ [0, 1]
T (x, 1) = e−1 cosx, x ∈ [0, π]

The analytic solution is T (x, t) = exp(−t) cosx. The approximate solu-
tions obtained by the method are compared with the analytic solutions
and results are depicted in Fig. 3-4. The related parameters informa-
tion is tabulated in Table 2. It is clear that the approximate solutions
of Case II are superior to Case I. It is due to more training points.

It can be seen that as the number of the training points increase, the
kernel bandwidth σ becomes larger and the error decrease. In all cases,
we always have ‖TA − TL‖∞ = O(τ2 + h2), and the proposed method
has higher accuracy and stability. In the future, this method may be
employed to solve more complex inverse problems.
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Figure 4. Numerical results for equation (4.3) at t = 1.
a: Case I, b: Case II.

Direct Inverse

case ‖TA − TL‖∞ aver err 2σ2 ‖TA − TL‖∞ aver err 2σ2

case I 2.16e-5 5.53e-6 0.985 1.27e-4 2.84e-5 0.525
case II 7.80e-6 2.11e-6 1.385 2.93e-5 4.72e-6 1.300

Table 2. Numerical results of the proposed method for
solving example II

5. Conclusion

In this paper, we introduced a method based on LS-SVM for one-
dimension backward heat conduction problems. We have shown our
method can solve the problem successfully. Although the method based
on ANN can solve the problems with higher accuracy, it has some obvi-
ous drawbacks. Theoretically, PDEs can be solved by ANN can also be
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solved by LS-SVM. Because of complex boundary conditions and non-
linearity, the method based on LS-SVM may have some trouble to solve
PDEs. That is why we focus on one-dimension heat conduction problem
in this paper. Taking into account complexity, we assume approximate
solutions directly which does not need dual form. This is different from
previous LS-SVM based ones. On the tested problems, the method
proposed in this paper is successful with accuracy and stability. Conse-
quently, this method can be used for backward heat conduction problems
with complex boundary conditions. We believe this method can be used
for a wide class of inverse problems.
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